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Long term goal: Accurate and stable continuum schemes
for full-F edge gyrokinetics in 3D geometries

Question: Can one develop accurate and stable schemes that
conserve invariants, maintain positivity and use as few grid points
as possible?

Proposed Answer

Explore high-order hybrid discontinuous/continuous Galerkin
finite-element schemes, enhanced with flux-reconstruction and a
proper choice of velocity space basis functions.
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Several fluid and kinetic problems are described by a
Hamiltonian

∂f

∂t
= {H, f }

where H(z1, z2) is the Hamiltonian and canonical Poisson bracket
is

{g , h} ≡ ∂g

∂z1

∂h

∂z2
− ∂g

∂z2

∂h

∂z1
.

Defining phase-space velocity vector α = (ż1, ż2), with
ż i = {z i ,H} leads to phase-space conservation form

∂f

∂t
+∇ · (αf ) = 0.

Additionally ∇ ·α = 0 (Liouville theorem).
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Example: Incompressible Euler equations in two dimensions
serves as a model for E × B nonlinearities in gyrokinetics

A basic model problem is the incompressible 2D Euler equations
written in the stream-function (φ) vorticity (f ) formulation. Here
the Hamiltonian is simply H(x , y) = φ(x , y).

∂f

∂t
+∇ · (uf ) = 0

where ux = {x ,H} = ∂φ/∂y and uy = {y ,H} = −∂φ/∂x . The
potential is determined from

∇2φ = −f .
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Example: Vlasov equation for electrostatic plasmas

The Vlasov-Poisson system has the Hamiltonian

H(x , p) =
1

2m
p2 + qφ(x)

where q is species charge and m is species mass and p = mv is
momentum. With this ẋ = v and v̇ = −q∂φ/∂x leading to

∂f

∂t
+ v

∂f

∂x
− q

m

∂φ

∂x

∂f

∂v
= 0

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms http://www.ammar-hakim.org/sj



For Vlasov equation potential can be determined in two
different ways

For electron plasma waves use full Poisson equation

∂2φ

∂x2
= −ρc

ε0

where ρc = |e|(nio(x)− n(x , t)) is total charge density. For
ion-acoustic waves use quasi-neutrality

ni (x) = neo

(
1 +
|e|φ
Te

)
where neo is the constant electron initial density and Te is the
fixed electron temperature. This determines potential without the
need to solve a Poisson equation and is a model of parallel
dynamics in gyrokinetics.
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Gyrokinetic equation can also be derived from gyro-center
Hamiltonian

In the Hamiltonian gyrokinetic theory1 the gyrokinetic equation is
derived from the gyrocentre Hamiltonian in gyro-center coordinates
(R, v‖, µ, α)

H =
1

2
mi v

2
‖ + µB + ei 〈φ〉α

where v‖ is the parallel velocity, µ is the magnetic moment, α is
gyro-angle and φ is the electrostatic potential. Poisson bracket is
no longer canonical, but gyrokinetic Vlasov equation can still be
written as a conservation equation in phase-space.

1A Brizard and T Hahm. “Foundations of nonlinear gyrokinetic theory”. In:
Reviews of Modern Physics 79.2 (Apr. 2007), pp. 421–468.
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Invariants for Hamiltonian systems can be derived by
looking at weak-form of equations

Multiplying conservation law form by a smooth test function
w(x , v) and integrating over an arbitrary volume element K gives
the weak-form∫

K
w
∂f

∂t
dΩ +

∫
∂K

w−α · nfdS −
∫

K
∇w ·αfdΩ = 0.

Picking w = 1 leads to (with periodic boundary conditions)
particle conservation

d

dt

∫
K

fdΩ = 0.
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Energy conservation is derived using Hamiltonian itself as
test function

Substituting the Hamiltonian for the test function and using the
identity ∇H ·α = 0 leads to∫

K
H
∂f

∂t
dΩ = 0.

For the incompressible Euler equation this becomes

∂

∂t

∫
K

1

2
|∇φ|2dΩ = 0.

For the Vlasov-Poisson system this becomes

∂

∂t

∫
E +

ε0

2

(
∂φ

∂x

)2

dx = 0

where E(x , t) ≡ 1
2

∫∞
−∞mv 2fdv is the fluid energy.
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Generalized entropy (enstrophy) conservation can be
derived using the solution as test function

The solution itself can be used as a test function. This gives∫
K

f
∂f

∂t
dΩ +

∫
∂K

f −α · nfdS −
∫

K
∇f ·αfdΩ = 0.

As ∇f ·αf = ∇ · (αf 2/2) the last term reduces to a surface
integral, leading to

∂

∂t

∫
K

1

2
f 2dΩ = 0.
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Valsov-Poisson system also admits momentum
conservation

For the Vlasov-Poisson system we can select the coordinate v as
the test function. This leads to∫

K
v
∂f

∂t
dΩ +

∫
∂K

vα · nfdS −
∫

K
∇v ·αfdΩ = 0.

As ∇v ·α = {v ,H} = v̇ f the last term becomes∫
K

v̇ fdΩ =

∫
|e|
m

∂φ

∂x
n dx .

Using the Poisson equation to eliminate n(x , t), integrating by
parts and applying boundary condition leads to the momentum
conservation law

d

dt

∫
K

vfdΩ = 0.
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A discontinuous finite element scheme is used to discretize
Hamiltonian equation

To discretize the equations introduce a triangulation Kν of the
domain K . Pick a finite-dimensional function space

Vk
m(K ) ≡ {w : w |Kν ∈ Pk (Kν)} ∩ C m

where Pk (Kν) is the space of polynomials of order at most k on
the element Kν . Then the discrete problem is stated as: find
fh ∈ Vk

−1 such that for all smooth w we have∫
Kν

w
∂fh

∂t
dΩ +

∫
∂Kν

w−n ·αh f̂h dS −
∫

Kν

∇w ·αhfh dΩ = 0.

Here f̂h = f̂ (f +
h , f −h ) is the consistent numerical flux on ∂Kν .
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A continuous finite element scheme is used to discretize
Poisson equation

To discretize the Poisson equation the problem is stated as: find
φh ∈ V r

0 such that for all smooth ψ we have∫
K
ψ∇2φhdΩ =

∫
K
ψsdΩ

where s represents the sources. For ion-acoustic waves the number
density and potential are related by a projection operator: find
φh ∈ Vk

0 given a nih ∈ Vk
−1 such that for all smooth w∫

wnih dx = neo

∫
w

(
1 +
|e|φh

Te

)
dx

This leads to a global solve for the potential. For the case in which
potential is allowed to be discontinuous leading hence a local
determination of the potential, see poster by G. Hammett.
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Only recently conditions for conservation of discrete energy
and enstrophy were discovered

Liu and Shu2 have shown that discrete energy is conserved for 2D
incompressible flow if

φh ∈ Vk
0 ⊆ fh ∈ Vk

−1

Enstrophy (generalized entropy) is conserved if central fluxes are
used in the DG scheme. With upwind fluxes, enstrophy decays and
hence the scheme is stable in the L2 norm.

2J-G Liu and C-W Shu. “A High Order Discontinuous Galerkin Method for
2D Incompressible Flows”. In: Journal of Computational Physics (2000).
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Momentum conservation is not exact but is independent of
velocity resolution

For electrostatic problems the condition for conservation of discrete
momentum reduces to a vanishing average force, i.e. we must have∫

nhEhdx = 0

However, one can show that as Eh is discontinuous, the present
scheme does not satisfy this condition, and hence momentum is
not conserved.
One can imagine that projecting Eh ∈ Vk−1

−1 to a smoother space

Vk−1
0 to make it continuous would help. However, even with a

projection momentum is not conserved. Solving the Poisson
equation with higher order continuity (φh ∈ V r

1) also does not help
as then the energy conservation condition is violated.
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Prototype code named Gkeyll has been developed
I Gkeyll is written in C++ and is inspired by framework efforts

like Facets, VORPAL (Tech-X Corporation) and WarpX (U.
Washington). Uses structured grids with arbitrary
dimension/order nodal basis functions.

I Linear solvers from Petsc3 are used for inverting stiffness
matrices.

I Games programming language Lua4, used in games like World
of Warcraft (10 million users), is used as an embedded
scripting language to drive simulations.

I MPI is used for parallelization via the txbase library
developed at Tech-X Corporation.

I Package management and builds are automated via scimake

and bilder, both developed at Tech-X Corporation.
3http://www.mcs.anl.gov/petsc/
4http://www.lua.org
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A simulation journal with results is maintained at
http://www.ammar-hakim.org/sj

I Each algorithm is carefully
tested against analytical or
numerical results.

I Results are extensively
documented and Lua programs
are put online.

I Journal allows sharing of results
as well as enables reproducibility
as scripts, figures and notes are
available via the internet.

Figure: Swirling flow problem. The initial
Gaussian pulses distort strongly but regain
their shapes after a period of 1.5 seconds.
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Accuracy and convergence of schemes was tested with
Vlasov equation with specified potential: cos(x) potential
well

Figure: Distribution function at t = 3 (left) and t = 20 (right) for flow in a cos(x)
potential well. A separatrix forms along the trapped-passing boundary. Simulation run
with a DG2 scheme on a 64× 128 grid.
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With quadratic potential φ(x) = x2 a rigid-body motion of
trapped particles in phase-space is seen

Figure: Distribution function at t = 3 (left) and t = 20 (right) for flow in a x2

potential well. Bounce period of all trapped particles is the same, leading to a
rigid-body motion inside trapped region.
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Double shear problem is a good test for resolution of
vortex shearing in E × B driven flows

Vorticity at t = 8
with different grid
resolutions and
schemes. Third
order DG scheme
runs faster and
produces better
results than DG2
scheme.
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Vortex waltz problem tests resolution of small-scale vortex
features and energy and enstrophy conservation

Figure: Vorticity for the vortex waltz
problem with the third-order scheme on a
128× 128. Upwind fluxes were used for
this calculation.

Figure: Energy and enstrophy error for
vortex waltz problem. Central fluxes were
used and show O(∆t)3 convergence on a
fixed 64× 64 grid.
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Linear Landau damping simulations were compared with
exact solutions of dispersion relations

Field energy (blue) as a
function of time for linear
Landau damping problem
with k = 0.5 and
Te = 1.0. The red dots
represent the maxima in
the field energy which are
used to compute a linear
least-square fit. The slope
of the black line gives the
damping rate.
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Numerically computed damping rates compare accurately
with exact results

Damping rate from
Landau damping for
electron plasma
oscillations as a function
of normalized Debye
length. The damping rates
are within 3% of the exact
values, and for large values
of kλD within 1%.
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Nonlinear Landau damping simulations show particle
trapping and phase-space hole formation

Field energy as a function
of time for nonlinear
Landau damping problem
with k=0.5, Te = 1.0 and
α = 0.5. The initial
perturbation decays at a
rate of γ = 0.2916, after
which the damping is
halted from particle
trapping. The growth rate
of this phase is
γ = 0.0879.
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DG scheme can efficiently capture fine-scale features in
phase-space
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Energy is conserved to same order as temporal
discretization error of O(∆t)3 independent of phase-space
discretization

Figure: Convergence of energy error with time-step. The red curve shows errors from
second order scheme, black from third order scheme.
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To test momentum conservation an asymmetric initial
density profile needs to be used

Figure: Initial density profile to drive momentum. Using a symmetric density (net zero
initial momentum) profile can lead to misleading conservation results.
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Momentum is not conserved but is independent of velocity
space resolution and converges rapidly with spatial
resolution and polynomial order

Nx Error DG2 Order

8 1.3332× 10−3

16 3.9308× 10−4 1.76

32 8.5969× 10−5 2.19

64 1.5254× 10−5 2.49

128 2.3105× 10−6 2.72

Nx Error DG3 Order

8 1.9399× 10−5

16 4.0001× 10−7 5.60

32 5.1175× 10−8 2.97

64 2.2289× 10−9 4.52

128 8.9154× 10−11 4.64
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A local-DG scheme is used to discretize diffusion terms for
use in collision operators

Advection-diffusion
problem with local DG
scheme. The initial
condition is sin(x) for
which the exact solution
at time t is
e−αtsin(x − λt) where α
is the diffusion coefficient
and λ is advection
velocity. Black dots are
exact solutions and solid
lines numerical results.
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A particle, momentum and energy conserving
Lenard-Bernstein collision operator is implemented using
local DG diffusion solver

Relaxation of a
step-function distribution
function to Maxwellian
due to collisions. The solid
lines show distribution
function at different times
and the dots the exact
Maxwellian distribution
with specified temperature
and density.
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Conclusions: An efficient and accurate discontinuous
Galerkin scheme for general Hamiltonian field equations is
presented

I A discontinuous Galerkin scheme to solve a general class of
Hamiltonian field equations is presented.

I The Poisson equation is discretized using continuous basis
functions.

I With proper choice of basis functions energy is conserved.

I With central fluxes enstrophy (generalize entropy) is
conserved. With upwind fluxes the scheme is L2 stable.

I Momentum is not conserved but is independent of velocity
space resolution and converges rapidly with spatial resolution
and polynomial order of the scheme.
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Future work: extend scheme to higher dimensions and
general geometries and collision terms

I Higher-order basis functions have been implemented and are
being tested.

I The schemes will be extended to take into account
complicated edge geometries using a multi-block structured
grid.

I Special basis functions for velocity space discretization will be
developed to allow coarse resolution simulations with the
option of fine scale resolution when needed.

I A collision model has been implemented. It will be extended
to higher dimensions.
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